Кто впервые применил метод управления через информацию
Перейти к содержимому

Кто впервые применил метод управления через информацию

  • автор:

Кафедра Теоретической Кибернетики

Большая российская энциклопедия определяет кибернетику (от греч. κυβερνητηκη — искусство управления, от κυβερναω — правлю рулём, управляю) как науку об управлении, связи и переработке информации.

Кибернетические системы и информация

Основным объектом исследования в кибернетике являются так называемые кибернетические системы. Примерами кибернетических систем могут служить разного рода автоматические регуляторы в технике (например, автопилот или регулятор, обеспечивающий поддержание постоянной температуры в помещении), электронные вычислительные машины (ЭВМ или компьютеры), человеческий мозг, биологические популяции, человеческое общество. Кибернетические системы имеют рецепторы (датчики), воспринимающие сигналы из внешней среды и передающие их внутрь системы, а также входные и выходные каналы, по которым они обмениваются сигналами с внешней средой. Выходные сигналы системы передаются во внешнюю среду через эффекторы (исполнительные устройства). Поскольку каждая система сигналов, независимо от того, формируется она разумными существами или объектами и процессами неживой природы, несет в себе ту или иную информацию, то всякая кибернетическая система, может рассматриваться как преобразователь информации. Рассмотрение различных объектов живой и неживой природы как преобразователей информации или как систем, состоящих из элементарных преобразователей информации, составляет сущность так называемого кибернетического подхода к изучению этих объектов.

Мозг и компьютеры

Из числа сложных технических преобразователей информации наибольшее значение имеют компьютеры. Компьютеры обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.) могут быть выполнены компьютером после введения в него составленной должным образом программы. Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг. Свойство универсальности современных компьютеров открывает возможность моделирования с их помощью любых других преобразователей информации, в том числе мыслительных процессов. Такая возможность ставит компьютеры в особое положение: с момента своего возникновения они представляют основное техническое средство, основной аппарат исследования, которым располагает кибернетика.

Кибернетика и управление

Целенаправленное изменение поведения кибернетических систем происходит при наличии управления. Основной задачей системы с управлением является такое преобразование поступающей в систему информации и формирование таких управляющих воздействий, при которых обеспечивается достижение (по возможности наилучшее) заданных целей управления. Примером может служить система автоматического регулирования температуры воздуха в помещении: специальный термометр-датчик измеряет температуру воздуха T, управляющая система сравнивает эту температуру с заданной величиной T0 и формирует управляющее воздействие -k(T-T0) на задвижку, регулирующую приток тёплой воды в батареи центрального отопления. Знак минус при коэффициенте k означает, что регулирование происходит по закону отрицательной обратной связи, а именно: при увеличений температуры T выше установленного порога T0 приток тепла уменьшается, при её падении ниже порога — возрастает.

Отрицательная обратная связь необходима для обеспечения устойчивости процесса регулирования. Устойчивость системы означает, что при отклонении от положения равновесия (когда T=T0) как в одну, так и в другую сторону система стремится автоматически восстановить это равновесие. При простейшем предположении о линейном характере зависимости между управляющим воздействием и скоростью притока тепла в помещение работа такого регулятора описывается дифференциальным уравнением dT/dt=-k(T-T0), решением которого служит функция T=T0+d exp(-kt), где d — отклонение температуры T от заданной величины T0 в начальный момент времени. Поскольку рассмотренная система описывается линейным дифференциальным уравнением 1-го порядка, она носит название линейной системы 1-го порядка. Более сложным поведением обладают линейные системы 2-го и более высоких порядков и особенно нелинейные системы. Возможны системы, в которых принцип программного управления комбинируется с регулированием в смысле поддержания заданного значения той или иной величины. Так, например, в описанный регулятор комнатной температуры может быть встроено программное устройство, меняющее значение регулируемого параметра. Задачей такого устройства может быть, скажем, поддержание температуры +20 o С в дневное время и снижение её до +16 o С в ночные часы. Функция простого регулирования перерастает здесь в функцию слежения за значением программно изменяемого параметра. В более сложных следящих системах задача состоит в поддержании (возможно более точном) некоторой фиксированной функциональной зависимости между множеством самопроизвольно меняющихся параметров и заданным множеством регулируемых параметров. Примером может служить система, непрерывно сопровождающая лучом прожектора маневрирующий произвольным образом самолет.

В так называемых системах оптимального управления основной целью является поддержание максимального (или минимального) значения некоторой функции от двух групп параметров, называемой критерием оптимального управления. Параметры первой группы (внешние условия) меняются независимо от системы, параметры второй группы являются регулируемыми, т. е. их значения могут меняться под воздействием управляющих сигналов системы. Простейший пример оптимального управления снова даёт задача регулирования температуры комнатного воздуха при дополнительном условии учёта изменений его влажности. Величина температуры воздуха, дающая ощущение наибольшего комфорта, зависит от его влажности. Если влажность всё время меняется, а система может управлять лишь изменением температуры, то естественно в качестве цели управления поставить задачу поддержания температуры, которая давала бы ощущение наибольшего комфорта. Это и будет задача оптимального управления. Системы оптимального управления имеют большое значение в задачах управления экономикой. Если данных для обеспечения удовлетворительного качества системы недостаточно, можно строить так называемые адаптивные регуляторы, собирающие недостающую информацию в ходе работы системы и использующие ее для повышения качества своей работы.

Методы кибернетики

Кибернетика использует для исследования систем три принципиально различных метода. Два из них — математический анализ и физический эксперимент широко применяются и в других науках. Сущность первого метода состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью.

Одним из важнейших достижений кибернетики является разработка и широкое использование нового метода исследования, получившего название вычислительного (машинного) эксперимента, или математического моделирования. Смысл его состоит в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его математическим описанием, реализованным в компьютере. Огромное быстродействие современных компьютеров зачастую позволяет моделировать процессы в более быстром темпе, чем они происходят в действительности.

История кибернетики

Первым, кто применил термин КИБЕРНЕТИКА для управления в общем смысле, был по-видимому, древнегреческий философ Платон. Однако реальное становление КИБЕРНЕТИКИ как науки произошло много позже. Оно было предопределено развитием технических средств управления и преобразования информации. Ещё в средние века в Европе стали создавать так называемые андроиды — человекоподобные игрушки, представляющие собой механические, программно управляемые устройства. Первые промышленные регуляторы уровня воды в паровом котле и скорости вращения вала паровой машины были изобретены И. И. Ползуновым (Россия) и Дж. Уаттом (Англия) в 18 веке. Решающее значение для становления КИБЕРНЕТИКИ имело создание в 40-х гг. ХХ в. электронных вычислительных машин — ЭВМ или компьютеров (Дж. фон Нейман и др.). Благодаря ЭВМ возникли принципиально новые возможности для исследования и фактического создания действительно сложных управляющих систем. Оставалось объединить весь полученный к этому времени материал и дать название новой науке. Этот шаг был сделан американским математиком Норбертом Винером, опубликовавшим в 1948 свою знаменитую книгу «Кибернетика». Винер определил КИБЕРНЕТИКУ как «науку об управлении и связи в животном, машине и обществе». Стремительное развитие вычислительной техники породило большой интерес к кибернетике в 60-70е годы и ее бурное развитие во всем мире. В 80-90е годы термин КИБЕРНЕТИКА был частично вытеснен термином «Информатика», имеющим отношение прежде всего к компьютерам и обработке информации. Однако в последние годы КИБЕРНЕТИКА вновь стала популярной в связи с развитием Интернета (киберпространство) и робототехники (киборг — кибернетический организм — устройство с высокой степенью физического и интеллектуального взаимодействия человека и технических средств автоматики). Киборги, так же как и роботы-манипуляторы, находят все более широкое применение при управлении объектами в недоступных или опасных для жизни человека условиях.

Кибернетика в школе

На школьном уровне кибернетика понимается, в соответствии с ее методами, как наука, находящаяся на стыке математики, физики и информатики. При этом основные понятия кибернетики входят в школьный стандарт по курсу «Информатика».

Соответственно, олимпиада по кибернетике проводится как соревнование по решению задач, требующих знаний и навыков по перечисленным предметам школьного курса.

Искусство управления всем: что такое кибернетика и зачем она нужна

Фото: Shutterstock

В 1948 году математик Норберт Винер опубликовал книгу «Кибернетика, или Управление и связь в животном и машине», положив начало новой науке кибернетике. Прошло 70 лет, и до сих пор не всем понятно, что же это такое

Что такое кибернетика?

Кибернетика — это междисциплинарная наука об общих закономерностях получения, хранения, преобразования и передачи информации в сложных управляющих системах, будь то машины, живые организмы или общество. Это попытка ученых создать общую математическую теорию управления сложными системами, совместить на первый взгляд несовместимое и найти общность там, где ее не может быть. Сло­во «ки­бер­не­ти­ка» впер­вые упот­ребил Пла­то­н в диа­ло­ге «За­ко­ны» (4 в. до н. э.) для обо­зна­че­ния «принципов управ­ле­ния людь­ми». В научный оборот термин «кибернетика» ввел французский физик и математик Андре-Мари Ампер, чьим именем мы измеряем силу электрического тока. В 1834 году в своем фундаментальном труде «Опыт о философии наук, или аналитическое изложение естественной классификации всех человеческих знаний» он определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. В том виде, в каком мы понимаем его сегодня, термин «кибернетика» ввел американский математик Норберт Винер в своей книге «Кибернетика, или Управление и связь в животном и в машине», опубликованной издательством MIT Press/Wiley and Sons в 1948 году. Он создал совершенно новую область исследований и совершенно новый взгляд на мир. Уникальность его идей в том, что он показал: животные, как и машины, могут быть включены в более обширный класс объектов, отличительной особенностью которого является наличие систем управления. Винера называют «отцом кибернетики». Однако большой вклад в развитие науки внесли и другие ученые — английский психиатр Уильям Эшби, американский нейрофизиолог Уоррен Маккалок, английский математик Алан Тьюринг, мексиканский физиолог Артуро Розенблют, советские математики Андрей Колмогоров и Виктор Глушков и другие.

Академик Виктор Глушков — ключевая фигура советской кибернетики

Академик Виктор Глушков — ключевая фигура советской кибернетики (Фото: ТАСС)

Основные принципы кибернетики

Как и в любой науке, у кибернетики есть свои законы и принципы. Основные из них — это принцип «черного ящика» и закон обратной связи. Принцип «черного ящика» ввел английский психиатр, специалист по кибернетике и пионер в исследовании сложных систем Уильям Эшби. Этот принцип позволяет изучать поведение системы, то, как она реагирует на внешние воздействия, и в то же время абстрагироваться от ее внутреннего устройства. То есть кибернетики соглашаются с когнитивными ограничениями человека и невозможностью понять всех состояний системы, которые она может принимать прямо сейчас. Закон обратной связи заключается в простом факте: если есть объект управления и субъект управления, то для выработки адекватных управляющих воздействий, имея информацию о состоянии объекта, субъект может принимать адекватное решение по его управлению. То есть манипулируя входными сигналами, мы можем наблюдать некий результат работы системы на выходе. При этом принципы и законы кибернетики одинаково применимы к управлению автомобилем, крупным предприятием, поведением толпы или бионическим протезом. Одно из важнейших достижений кибернетики — разработка и широкое использование метода математического моделирования. Он позволяет проводить эксперименты не с реальными физическими моделями изучаемых объектов, а с их математическим описанием в виде компьютерных программ.

Сферы кибернетики

  • искусственный интеллект;
  • медицинская кибернетика;
  • биологическая кибернетика;
  • инженерная кибернетика;
  • спортивная кибернетика;
  • экономическая кибернетика;
  • социальная кибернетика;
  • правовая кибернетика и другие.

Искусственный интеллект

Как отдельное направление исследований искусственный интеллект (ИИ) возник в середине XX века, в попытке понять организацию работы мозга с помощью математических методов.

Искусственный интеллект определяют как научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования интеллектуальных видов человеческой деятельности. Кроме этого под ИИ понимают свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека.

Решения на основе искусственного интеллекта сегодня внедряются во все сферы нашей жизни: медицина, образование, политика, сельское хозяйство, банки, безопасность и другие.

Другая сфера, которая тесно связана с ИИ — робототехника.

Фото:Сергей Бобылев / ТАСС

Медицинская кибернетика

Медицинская кибернетика — это междисциплинарное научное направление, связанное с использованием идей, методов и технических средств кибернетики в медицине и здравоохранении. Медицина стала одной из тех сфер, наряду с робототехникой и компьютерными технологиями, где кибернетика получила большое распространение.

Врачи-кибернетики работают в тесном содружестве с врачами-клиницистами (терапевтами, хирургами, реаниматологами, неврологами, реабилитологами и так далее), физиологами, биохимиками, математиками, инженерами и другими специалистами.

В России как специальность высшего медицинского образования появилась в 1974 году.

Чем занимается медицинская кибернетика:

  • Разработка медицинских информационных технологий — единая государственная система здравоохранения, электронные медицинские карты и рецепты, телемедицина.
  • Развитие искусственного интеллекта в медицине позволяет осуществлять диагностику с помощью компьютерных технологий, прогнозировать состояние пациентов, автоматически расшифровывать специализированные медицинские снимки и изображения.
  • Внедрение сложных компьютеризированных комплексов — томографы, ангиографы, системы визуализации и радиоизотопные системы, системы лазерной микрохирургии и другие. А также создание портативных, комфортных и индивидуальных приборов, которые объективно оценивают показатели пациента и передают их в реальном времени в аналитические центры.
  • Исследования в области биологии и медицины — клиническая биоинформатика, 3D-моделирование лекарственных средств, исследование лекарств и лекарственного взаимодействия на молекулярном уровне.
  • Математическое моделирование физиологических процессов, эпидемий и др.

Кибернетическая биология

Кибернетическая биология изучает кибернетические системы в биологических организмах с упором на то, как животные адаптируются к окружающей среде и как информация в форме генов передается от поколения к поколению.

Основные направления кибернетической биологии:

  • Биоинженерия — комплексная дисциплина, которая использует междисциплинарные разработки в области инженерии, биологии и медицины для лечения болезней, укрепления здоровья и продления жизни.
  • Бионика или биомиметика — научный подход к созданию технологических устройств, при котором идея и основные его элементы заимствуются из живой природы и используются для решения задач, стоящих перед человеком. Самый простой пример биомиметики — текстильная застежка-«липучка», прототипом которой стали плоды репейника.
  • Синтетическая биология — новое направление науки, которое объединяет инженеров, физиков, молекулярных биологов и химиков, чтобы использовать инженерные принципы для соединения биомолекулярных компонентов: генов, белков и других составных частей в новые структуры и сети.
  • Биомеханика изучает в основном механические свойства опорно-двигательного аппарата. Фундаментальные исследования в этой области послужили базой для разработки, например, искусственных суставов.
  • Кибернетические организмы — биологические организмы, содержащие механические или электронные компоненты.

Инженерная кибернетика

Инженерная кибернетика — междисциплинарное исследование и автоматическое управление техническими динамическими системами, такими как роботы, самолеты, морские суда, автомобильные системы и технологические установки.

Одно из направлений — разработка и создание автоматических устройств: технологических, измерительных (различные датчики, регистраторы, измерительные комплексы) и информационных.

Спортивная кибернетика

Спортивная кибернетика — научный подход к мониторингу физиологии игроков, оценки их психологического состояния, а также к изучению и разработке стратегии и тактики игр для командных видов спорта.

Одним из первых математические методы и принципы кибернетики в спорте применил кандидат биологических наук, доцент Валентин Петровский, преподаватель кафедры легкой атлетики Киевского физкультурного института и тренер-новатор. В 1960 годах Петровский рассчитал математическую модель тренировок для спортсмена Валерия Борзова, который стал чемпионом мира по легкой атлетике.

В 1975 году киевское «Динамо» выиграла у мюнхенской «Баварии» Суперкубок Европы по футболу со счетом 3:0. Это произошло благодаря работе тренера Валерия Лобановского, футбольного статиста Анатолия Зеленцова и футболиста и тренера Олега Базилевича. Они создали первый в мире постоянно действующий научный центр при команде «Динамо» в Киеве. Там разработали уникальные программы и методики моделирования учебно-тренировочного процесса, контроля и анализа соревновательной деятельности, моделирования стратегии и тактики игр. Сегодня работу профессиональных спортсменов различных спортивных направлений сложно представить без компьютерных технологий и математических методов анализа.

Команда киевского «Динамо» с завоеванным Суперкубком УЕФА, 1975 год

Команда киевского «Динамо» с завоеванным Суперкубком УЕФА, 1975 год (Фото: ТАСС)

В 2017 году в России была создана Ассоциация компьютерных наук в спорте, объединившая ученых, в том числе математиков, физиологов, психологов, биомехаников, а также ИТ-специалистов, тренеров и спортивных врачей.

Экономическая кибернетика

Экономическая кибернетика — об­ласть нау­ки, которая изучает дви­же­ние ин­фор­ма­ции в эко­но­ми­ке и ее влия­ние на эко­но­мические про­цес­сы с учетом обратной связи. Воз­ник­ла на сты­ке ма­те­ма­ти­ки и ки­бер­не­ти­ки с эко­но­ми­кой и включает в себя ма­те­ма­ти­че­ское про­грам­ми­ро­ва­ние, ис­сле­до­ва­ние опе­ра­ций, эко­но­ми­ко-ма­те­ма­ти­че­ские мо­де­ли, эко­но­мет­ри­ку и ма­те­ма­ти­че­скую эко­но­мию.

В ка­че­ст­ве са­мо­сто­ятельного на­учного на­прав­ле­ния экономическая кибернетика поя­ви­лась в конце 1950 годов. Основателем экономической кибернетики считается британский теоретик и практик в области исследования операций Стаффорд Бир. С того времени она диф­фе­рен­ци­ро­ва­лась на мно­же­ст­во са­мо­сто­ятельных на­прав­ле­ний: сис­те­му ис­кус­ст­вен­но­го ин­тел­лек­та для под­держ­ки биз­нес-ре­ше­ний, тео­рию про­ек­ти­ро­ва­ния эко­но­мических ме­ха­низ­мов (кон­кур­сов, аук­цио­нов и так далее) и ор­га­ни­за­ций, ис­сле­до­ва­ния рын­ков ин­фор­ма­ции, а также ме­недж­мент зна­ний.

Cybersyn — проект централизованного компьютерного управления плановой экономикой в Чили в 1970–1973 годах под руководством кибернетика Стаффорда Бира.

Бир использовал для анализа экономики Чили модели жизнеспособной системы (viable system model), основанную на принципах нервной системы человека. Он критиковал иерархический процесс принятия решений, когда управление осуществляется директивно при накоплении статичных данных. Вместо этого он предложил закольцевать процесс принятия решений, расположив между правительством и производствами специальный аппарат управления. Этот аппарат должен собирать и передавать информацию от работников руководству, контролировать и обеспечивать выполнение распоряжений, поддерживать саморегуляцию всей системы за счет распределения выделенных ресурсов относительно потребностей. Гибкость процесса управления гарантировала постоянная обратная связь. А ключевыми элементами становились коммуникация, адаптация и действие.

Ситуационный центр Cybersyn

Ситуационный центр Cybersyn (Фото: wikipedia.org)

В 1973 году военные во главе с генералом Аугусто Пиночетом совершили переворот в Чили. Отказавшись от идей плановой системы свергнутого президента-социалиста Сальвадора Альенде, они закрыли проект Cybersyn.

Общегосударственная Автоматизированная Система сбора и обработки информации для учета, планирования и управлении народным хозяйством СССР — одна из первых глобальных сетей в мире для управления экономикой государства. Создавалась и разрабатывалась под руководством академика и кибернетика Виктора Глушкова в 1960–1980-х годах.

Целью ОГАС должен был стать перевод всего документооборота страны в электронный, безбумажный вид, возможность управления экономикой в том числе в режиме реального времени, оптимизация технологических, экономических и организационных процессов, реорганизация управления, создание индустрии информационных технологий. В первоначальном проекте предполагалась даже отмена бумажных денег и замена их электронными платежами.

Частично проект реализован в 1968 году как Автоматическая система плановых расчетов (АСПР), которая просуществовала до 1994 года. По некоторым данным, при переходе на новые компьютеры, комплекс программ АСПР и банк данных, хранившиеся на ЕС ЭВМ, просто не перенесли на новые носители.

Социальная кибернетика

Социальная кибернетика — раздел в социологии, основанный на общей теории систем и кибернетике. Задача ее состоит в том, чтобы изучить закономерности самоорганизующейся общественной системы и создать оптимальную модель управления социальными процессами.

В реальном мире социальная кибернетика применима для лучшего понимания поведения толпы, в том числе во время беспорядков, а также причин их формирования и способов их предотвращения.

В 2006 году Международная социологическая ассоциация утвердила премию имени Уолтера Бакли за выдающиеся достижения в области социокибернетики.

Правовая кибернетика

Правовая кибернетика — научные исследования в сфере закономерностей оптимального функционирования государственно-правовых систем. Она решает задачи автоматизации юридической деятельности и ее отдельных видов. Сегодня правовая кибернетика активно используется для понимания различных законов и нормативных актов и того, как они могут применяться или не применяться в отдельных случаях.

Будущее кибернетики

Ожидания от кибернетики как научной дисциплины, которая сотворит революцию в обществе, в середине XX века были очень велики, но не все они смогли оправдаться. По мнению ученых, это произошло не из-за ограничений самой науки, а ограниченности специалистов, не сумевших реализовать потенциал кибернетических идей из-за их технологической и экономической несвоевременности. Спустя 70 лет у кибернетики есть все шансы реабилитироваться. Сегодня мы живем во времена, когда вычислительные возможности кажутся безграничными. Уже сейчас правительства и компании соревнуются, чтобы использовать преимуществами инноваций.

По мнению профессора Колледжа естественных наук Техасского университета Энди Эллингтона, в будущем люди начнут представлять собой нечто вроде новой «жизненной» формы, более связанной чем когда-либо с вычислительными устройствами. Достижения в области нейробиологии, электрохимии и синтетической биологии позволят нам подключаться к Сети напрямую.

Доктор биологических наук, профессор физического факультета и ведущий сотрудник Центра нейротехнологий ЮФУ Борис Владимирский считает, что интеграция мозга и кибернетики приведет к созданию виртуальной доли человеческого мозга. Она будет служить не только для распознавания образов или решения логических задач. Но и сообщать информацию, предлагать варианты разумного взаимодействия, отвечать на вопросы, а порой и задавать их.

СУЭБ ИВТ СО РАН

Словарные статьи в коллекции: (public_cat = Thesaurus of Information Technology: Dictionary Articles )

Кибернетика-происхождение термина

Надо отметить интересную историю происхождения самого слова кибернетика, которое Норберт Винер выбрал в качестве названия новой науки. Это название происходит от греческого «кибернетес» или «кибернет», что значит управляющий, кормчий. В древности греки были опытными мореплавателями. От искусства кормчего часто зависела судьба всего путешествия, так что слово это довольно часто встречается в древнегреческой литературе.

Заметим, что греческое слово κοβερνω (гиберно) означает губернию — административную единицу, населенную людьми, a κοβερνετ (гибернет), или по-русски, губернатор, — управляющий ресурсами и людьми,населяющими его губернию. Но слово κοβερνω для греков означало нечто большее, чем «губерния». Гиберно — это объект управления, содержащий людей. Воинская часть — это гиберно. А вот корабль сам по себе как некоторая техническая система уже не гиберно, и лоцман не гибернет. Корабль же с командой и пассажирами — это гиберно, и его капитан, который не только ведет корабль, но и управляет командой и пассажирами, является гибернетом.

Винер считал, что он применил этот термин впервые. Однако он ошибался. В 1948 году он не знал, что этот же термин ещё в 1834 году использовал для обозначения науки об управлении общественными системами великий французский физик и философ А.-М. Ампер . Более того, в 1843 году польский философ и ученый Ф.-Б. Трентовский издал в Познани книгу, которая называлась «Отношение философии к кибернетике как искусству управления народом».

Этот же корень киберн присутствует в таких словах как гувернер или губернатор. Говоря о кибернетике, необходимо обратить особое внимание на значение связи или иначе – передачи информации при функционировании любых естественных организмов и технических устройств.

Сейчас мы говорим, что информатика, выросшая из кибернетики, представляет собой совокупность научных направлений, изучающих общие свойства информации, методы и средства ее создания, хранения и передачи.

Ключевые термины, связанные с термином : «Кибернетика-происхождение термина»:

Литература

  1. Винер Н. Кибернетика или управление и связь в животном и машине. 2-е изд. / Н. Винер – М. Советское радио, 1968. – 328 с.
  2. Фет Я.И. Рассказы о кибернетике. – Новосибирск: Изд-во СО РАН, 2007. – 178 с.
  1. Моисеев Н. Н., Бронислав Трентовский и возникновение кибернетики // Н.Н. Моисеев // Люди и кибернетика. [Глава из книги]. — М.: Молодая гвардия. — 1984. — С. 14-21.
  2. Моисеев Н. Н., Люди и кибернетика / Москва: Молодая гвардия. — 1984.

Ссылка на персон:

  1. Ампер Андре Мари
  2. Винер Норберт
  3. Трентовский Фердинанд-Бронислав

© 2013-2024, Евразийский национальный университет им. Л.Н.Гумилева, Астана
© 2007-2024, Новосибирский государственный университет, Новосибирск
© 1998-2024, Институт вычислительных технологий СО РАН, Новосибирск
© 1998-2024, Федотов А.М.

ФИТ НГУ НГУ
ЕНУ им.Гумилева
ИВТ СО РАН

Дата последней модификации: 26.02.2015

Кибернетика

Термин «кибернетика» изначально ввел в научный оборот в 1830 году обратной связи, чёрных ящиков и производных концептов, таких как управление и самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи. Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.

Более философское определение кибернетики, предложенное в 1956 году Л. Куффиньялем , одним из пионеров кибернетики, описывает кибернетику как «искусство обеспечения эффективности действия». Новое определение было предложено Льюисом Кауфманом: «Кибернетика — исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

Объектом кибернетики являются все управляемые системы. Н. Винер , 1948) связано с созданием в 40-х гг. XX века этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.

Кроме средств геометрии выпуклых множеств , профессионально-технического образования . Кибернетика — наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем — от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма.

Кибернетика — более раннее, но всё ещё используемое общее обозначение для многих предметов. Эти предметы также простираются в области многих других наук, но объединены при исследовании управления системами.

Чистая кибернетика [ ]
  • Искусственный интеллект
  • Кибернетика второго порядка
  • Компьютерное зрение
  • Эмерджентность
  • В биологии [ ]
  • Биологическая кибернетика
  • Бионика
  • Нейрокибернетика
  • Теория сложных систем [ ]
  • Сложная адаптивная система
  • Теория сложных систем
В компьютерной науке [ ]

Компьютерная наука напрямую применяет концепты кибернетики для управления устройствами и анализа информации.

  • Адаптивная система
  • Нейрокомпьютинг
  • Техническая кибернетика
  • В экономике и управлении [ ]
  • Экономическая кибернетика
  • Исследование операций
  • В математике [ ]
  • Теория информации
  • Теория систем
В психологии [ ]
  • В социологии [ ]

220px-Andre-Marie Ampere 220px-James WattВ древности термин «кибернетика» использовался Платоном в контексте «исследования самоуправления» в «Законах», для обозначения управления людьми. Слово «cybernétique» (фр.) использовалось практически в современном значении в 1834 году французским физиком и систематизатором наук Джеймса Уатта был оборудован управляющим устройством, центробежным регулятором обратной связи для того, чтобы управлять скоростью двигателя. XX век [ ]

220px-Norbert wiener

Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера теории систем. Ранние применения отрицательной обратной связи в электронных схемах включали управление артиллерийскими установками и радарными антеннами во время Второй мировой войны. Джей Форрестер , аспирант в Лаборатории Сервомеханизмов в Массачусетском технологическом институте, работавший во время Второй мировой войны с Гордоном С. Брауном над совершенствованием систем электронного управления для американского флота, позже применил эти идеи к общественным организациям, таким как корпорации и города как первоначальный организатор Школы индустриального управления Массачусетского технологического института в Слоуновской школе управления Массачусетского технологического института. Также Форрестер известен как основатель системной динамики. обратной связи («обратная афферентация»). Исследования продолжались, в особенности в области математического моделирования регулирующих процессов, и две ключевые статьи были опубликованы в 1943 году . Этими работами были «Поведение, цель и телеология» А.Розенблюта, Норберта Винера и Дж.Бигелоу и работа «Логическое исчисление идей, относящихся к нервной активности» Ш. Мандельбройт . Во время этого пребывания во Франции Винер получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании броуновского движения (т. н. винеровский процесс) и в теории телекоммуникаций. Следующим летом, уже в Соединённых Штатах, он использовал термин «кибернетика» как заглавие научной теории. Это название было призвано описать изучение «целенаправленных механизмов» и было популяризировано в книге «Кибернетика, или управление и связь в животном и машине» (Hermann & Cie, Париж, 1948). В Великобритании вокруг этого в 1949 году образовался. В начале [1940-х клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже компьютерным вирусам, является дальнейшим доказательством универсальности кибернетических исследований. Винер популяризировал социальные значения кибернетики, проведя аналогии между автоматическими системами (такими как регулируемый паровой двигатель) и человеческими институтами в его бестселлере «Кибернетика и общество» (The Human Use of Human Beings: Cybernetics and Society Houghton-Mifflin, 1950). Одним из главных центров исследований в те времена была Биологическая компьютерная лаборатория в Иллинойском университете , которой в течение почти 20 лет, начиная с 1958 года , руководил Норберт Винер

Кибернетика в СССР [ ]

Развитие кибернетики в 1940-х годах. В « 1954 года издания попала характеристика кибернетики как « Упадок и возрождение [ ]

Francisco Varela 220px-UmplebyВ течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), но, лишившись поддержки, потеряла ориентиры дальнейшего развития. В 1970-х новая кибернетика проявилась в различных областях, но особенно — в биологии. Некоторые биологи под влиянием кибернетических идей ( Матурана и Варела, 1980; Варела , 1979; ( Атлан ( англ. ), 1979), «осознали, что кибернетические метафоры программы, на которых базировалась молекулярная биология, представляли собой концепцию автономии, невозможную для живого существа. Следовательно, этим мыслителям пришлось изобрести новую кибернетику, более подходящую для организаций, которые человечество обнаруживает в природе — организаций, не изобретённых им самим» [1] . Возможность того, что эта новая кибернетика применима к социальным формам организаций, остаётся предметом теоретических споров с 1980-х годов. В экономике в рамках проекта Киберсин попытались ввести кибернетическую административно-командную экономику в 1980-х новая кибернетика, в отличие от её предшественницы, интересуется «взаимодействием автономных политических фигур и подгрупп, а также практического и рефлексивного сознания предметов, создающих и воспроизводящих структуру политического сообщества. Основное мнение — рассмотрение рекурсивности, или самозависимости политических выступлений, как в отношении выражения политического сознания, так и путями, в которых системы создаются на основе самих себя» [2] . Голландские учёные-социологи Гейер и [3] . Гейер и Ван дер Зоувен также отметили, что «переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе к управляющей и фактору, который направляет управляющие решения. И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом» [4] . Последние усилия в изучении кибернетики, систем управления и поведения в условиях изменений, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции и исследование метаматериалов (материалов со свойствами атомов, их составляющих, за пределами ньютоновых свойств), привели к возрождению интереса к этой всё более актуальной области [5] .

Известные ученые [ ]

  • Норберт Винер (Norbert Wiener) ( Клод Шеннон ( Грегори Бейтсон ( Клаус, Георг ( См. также [ ]
  • Винер, Норберт
  • Литература [ ]
  • Винер Н. Кибернетика. — М.: Советское радио, Некоторые моральные и технические последствия автоматизации.
  • Шеннон К. Работы по теории информации и кибернетике. — М.: Изд. иностр. лит., 1963. — 830 с.
  • Эшби У. Р. Введение в кибернетику. — М.: Изд. иностр. лит., 1959. — 432 с.
  • Возможное и невозможное в кибернетике, Наука, 1964, 222 с.
  • Кибернетика ожидаемая и кибернетика неожиданная, Наука, 1968, 311 с.
  • Кибернетика. Итоги развития, Наука, 1979, 200 с.
  • Кибернетика. Современное состояние, Наука, 1980, 208 с.
  • Человеко-машинные метафоры в советской физиологии // Вопросы истории естествознания и техники. № 3, 2002. С. 472—506.
  • Гринченко С. Н. История человечества с кибернетических позиций // История и Математика: Проблемы периодизации исторических макропроцессов. — М.: КомКнига, 2006. — С. 38—52.
  • Грэхэм, Л.Естествознание, философия и науки о человеческом поведении в Советском Союзе. — М .: Политиздат, 1991. — 480 с.

Организации [ ]

  • The Cybernetics Society — кибернетическое общество (англ.)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *